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THE PROPAGATlO~ OF A WEAK ~~SCO~T~~U~~ IN A ~O~-L~~EAR ~EDI~fl 
WITH RIGID UNLOADING* 

A.A. LOKSHIN and E.A. SAGOMONYAN 

The unloading wave which arises in a non-linear semi-infinite rod when a 
smooth load is applied to its end is investigated. The unloading of the 
material of the rod is assumed to be rigid. A similar problem has been 
considered in /I/ (also, see 121, p-104) where the stress at the end of 
the rod was specified. The solution of this problem was reduced in 111 
to an implicit functional relationship which was subsequently analysed 
using asymptotic methods. The formulation in this paper differs from 
that in ,flf only in that it is not the stress but the velocity which is 
specified at the end of the rod. However, with such a formulation, the 
solution of the problem can be successfully obtained in explicit form. 
The connection between the results obtainedin this paper and the results 
in ,!l/ is pointed out. 

1. Let us consider a semi-infinite rod with a density p=const which is arranged on 
the semi-axis s>O. We assume that, under active loading, the stresses and deformations in 
the rod are connected by the relationship 

c = b (e), b’ > 0, b* 2 0 (1.i) 

while the deformations remain constant for unloading. Next, we assume that, at the instant 
of time t = 0, a load is applied to the end of the rod which is in an unstressed, resting 
state. We specify this load in the following manner: 

" (C, 0) = L'o V) > 0 (1.2) 
(0 is the velocity of a material element). In doing this, we assume that the function "a (0 
differs from zero only in the interval (O,T), it increases monotonically in the interval(u,M 
and monotonically decays in the interval ($m, T). Hence, the function v0 it) reaches a unique 
maximum when t== trn. 

The problem involves the determination of the equation for the unloading wave front. 
This equation is sought in the form ~=o(t). We shall denote by f* the previously unknown 
point on the t axis from which the unloading wave front starts out. Hence, q(#*)=O. 

2. In the loading domain lying in the t, X plane ahead of the unloading front the wave 
motion will be described by a simple rarefaction wave (shock waves are therefore not formed). 
In fact, the equation of a simple wave is valid in Lagrangian coordinates in the case of 
deformations and the solution of this equation, as is well-known, can be written in the form 

e = e, (t - z/J~) (2.1) 

where ~0 is a certain function. Furthermore, one of the Riemann invariants is identically 
zero in the loading domain: 

u + g (E) = 0; g (e) e 

0 

I,/ -7 de 

Consequently, 
vo (0 = -_g (% (6)) (2.3) 

By now applying the function g to both sides (2.1), we obtain the formula for the 
velocities in the active loading domain using (2.2) and (2.3) 

u = u0 (t - xlfb’og-’ (-q/p) (24 

(the small circle denotes the superpositioning of functions). 

3. Let us now write (in Lagrangian coordinates) the equations of motion in the domain of 
rigid unloading 
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whereupon we immediately obtain 
aO/ar = paviat, au/as = 0 (3.1) 

V = "0 (t), t > 1* (3.2) 
, 

We recall that the quantity 1' is as yet unknown. 
Let us now utilize the condition for the continuity of the velocities on the unloading 

wave front. By substituting cp(t) instead of 5 and v0 (t) instead of v into the right- 
hand side of inequality (2.4), we have from (2.4) and (3.2) 

Q (t) = u,, (1 - 'p @)/l/b’@ (--u. (N/p) (3.3) 

This functional equation is remarkable in that the arguments are under the sign of one 
and the same function on the right- and the left-hand sides. This fact enables us to solve 
this equation in an explicit form. 

Actually, for each t>f* we denote the value of the time by i such that v0 (t) = v0 (i), i < t. 
Then, since, according to the condition, the function L'o (t) consists only of two segments 
where it is monotonic, from the functional Eq.(3.3) we get the required equation for the 
unloading wave front (the argument on the right-hand side of (3.3) under the sign of v0 is 
equated to i): 

‘p (t) = (t - i)/l/b’@ (-v. (0)/p 

We finally recall that v((t*) =O. However, it follows from (3.4) that this equality 
is only possible if i* = f*. Consequently, t* is the point of the maximum on the curve 00 (0, 
that is, t* = t,,,. 

4. Let us now show that the stress field which arises in the rigid unloading domain 
can be recovered such that the condition of the continuity of the stresses on the unloading 
wave front is satisfied. 

We have from (3.1) and (3.2) in the unloading domain that 

whence 
au/ax = pvo’ (t), t > t, 

0 (1, 2) = P%' (t) 2 + F (t) 

where F(t) is a certain function to be defined. In particular, at the front we have 

0 (t. 'p (t)) = P%' (Q 'p (t) + F (t) 
On the one hand, in the region of active stress (where a simple wave propagates), 

(2.2) and the defining relationship (1.1) yield 
0 = bog-’ (-u) 

whence 

0 (t, 'p (t)) = bog-’ (--L. (t, ‘p (t)) ss b3g-’ (-u,, (t)), t > t,, 

By equating the right-hand sides of (4.2) and (4.4) and taking 
(3.4) for 9((t), we finally obtain 

F (t) = bog-' (-UO (t)) - 4' (t) (t - i) I/pb,‘.g-’ (-v. (t)) 

(4.1) 

(4.2) 
equality 

(4.3) 

(4.4) 

account of expression 

(4.5) 

Thus, formulae (4.1) and (4.5) explicitly recover the stress field in the unloading 
region which satisfies the continuitycondition at the front 2 = 'p (t). 

5. Let us use the notation o,(t)~a(t,O). Then it follows from (4.1) and (4.5) that 

LT~ (1) = bog’ (-Q, (1)) - q,’ (t) (t - i) X 1/ Pb’C1 (-00 (0), t > h (5.0 

while, by virtue of (4.3), 

Q (1) = bog-’ (-00 (f)), f < t, (5.2) 

It can be seen from the last two formulae that, in the case of a function v0 (t) which 
satisfies the conditions formulated in Sect.1, the function o,(t) turns out to be a non- 
negative monotonically increasing function in (0,&J and a monotonically decaying function 
in (f,,*. T). The result which has been obtained is in accord with the conclusion that the 
unloading front emerges from the point t, of the t axis. 

Remark. Formula (4.4) yields an expression for the mangitude of the stress at the front 
0 = O(L, v(t)) in terms of the boundary value of the velocity 00 (t). By solving Eq.(4.4) for 

va (0 and eliminating 00 (0 from (5.1), it is possible to obtain an ordinary differential 
equation which relates (r= o(t,cp(t)) and Q (t): 

doldt = (a0 (t) - a)/@ - i) (5.3) 

In this formula we must assume that S=i@), since the stress in the simple wave is con- 
stant on the characteristic joining the points (i, 0) and (t, cp (0). (In fact, when r>r,, 
we have, according to the construction of the point i, that v (t, cp (t)) = G, (0, but it follows 
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from this that IJ (t, cp (f)) = a, (t), whence the assertion made above also follows). A direct 

derivation of Eq.(5.3) has been given in /l/ where it was also shown that this equation is 
integrated in quadratures and a functional relationship is obtained which relates a=o(f,p(t)), 

=0 (1) and t. 
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THE RELATIONSHIP BETWEEN THE ENDOCHRONIC THEORY OF PLASTICITY 

AND THE "NEW" MEASURE OF INTERNAL TIME* 

YU.1. KADASHEVICH and A.B. MOSOLOV 

The transition from an earlier version of the endochronic theory of 
plasticity (ETP) to a theory with a "new" measure of internal time is 
considered together with the mutual relationship between the latter and 
flow theory. 

The endochronic theory of plasticity was initially put forward as a theory in which there 
was no yield surface (YS) /l/. This was its essential difference both from the well-known 
classical theories of plasticity (of the flow-theory type) and from the many modern theories 
which are based on the concept of a yield surface. Recently, however, a version of the 
isochronic theory of plasticity has become widely used which is based on a "new" measure of 
the internal time for which the Odqvist parameter /2-41 is actually used. There is already a 
yield surface in this version of the theory which may be considered as a rejection by the 
authors of this approach of the initial idea of constructing an analytical (non-singular) 
plasticity functional for arbitrary complex deformation processes. 

1. We shall use a vector representation of the loading and deformation processes. Let (r 
and e be the stress and deformation vectors respectively /5/. 

The ETP functional is written in the form 

(r = J (z - q) de (q) (1.‘) 

and is formally analogous to the linear viscoelasticity functional only, instead of the 
physical time, a new parameter 2, referred to as the internal time /l/, is used to describe 
the history of the deformation and loading processes. Generally speaking, the internal time 
z is assumed to be a functional of the deformation process. Several possible definitions of 
this quantity have been proposed. It was initially thought that 

dn=ds/f(s),&=jdel (1.2) 

where the function f(f>O) is responsible for the effects of isotropic strengthening (or 
weakening) of the material and is usually called the strengthening function. 

Refinement of the initial version of ETP proceeded in several directions. For instance, 
an alternative approach to the construction of certain ETP relationships was proposed in /6/. 
This approach was based on a more complex tensor-parametric form of writing the plasticity 
functional. 
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